
IEICE Electronics Express, Vol.*, No.*, 1–12

On an external memory scheme
for processor arrays

Roberto Perez-Andrade1a), Cesar Torres-Huitzil1,

Rene Cumplido2, Juan M. Campos2

1 CINVESTAV IPN, Information Technology Laboratory, Tamps., México
2 INAOE, Computer Science Department, Puebla, México

a) jrperez@tamps.cinvestav.mx

Abstract: The problem of generating memory interfaces between

loop-based accelerators and external memory is gaining the attention

from the high-level synthesis research community. This paper presents

an external memory system for inserting/extracting data to/from a

loop-based accelerator derived by a high-level synthesis approach. The

memory system is composed by four architectural cases which could

occur during hardware synthesis. The memory system is based on a

global asynchronous local synchronous approach and the use of dual-

port memory banks. FPGA-based implementation results show that

the proposed memory system is technologically achievable and provides

a high-bandwidth without introducing communication overhead.

Keywords: Processor arrays, loop-based algorithms, external memory

interface, FPGA

Classification: Electronic devices, circuits, and systems

References

[1] P. Coussy and A. Morawiec, Book High-Level synthesis from algorithm to

digital circuits, Springer Publishing Company, 2008.

[2] F. Hannig, H. Ruckdeschel, H. Dutta, and J. Teich, “PARO: Synthesis

of hardware accelerators for multi-dimensional dataflow-intensive appli-

cations”. Proc. 4th Int. Workshop on Applied Reconfigurable Comuting,

London, UK, volume 4943, pp. 287–293, March 2008.

[3] S. Derrien, S. Rajopadhye, P. Quinton, and T. Risset, “High-Level syn-

thesis of loops using the polyhedral model: the MMAlpha software” in

High-Level synthesis from algorithm to digital circuits, by P. Coussy and

A. Morawiec, pp.215–230, Springer, 2008.

[4] H. Devos, K. Beyls, M. Christiaens, J. V. Campenhout, E. H. D’Hollander,

and D. Stroobandt. “Finding and applying loop transformations for gener-

ating optimized FPGA implementations”. Trans. High Performance Em-

bedded Architectures and Compilers I, vol. 4050, pp. 159-178, 2007.

[5] H. Dutta, F. Hannig and J. Teich, “Controller synthesis for mapping par-

titioned programs on array architectures”. Proc. 19th Int. Conf. Architec-

ture of Computing Systems, Frankfurt am Main, Germany, pp. 176–191,

March, 2006.

[6] A. C. Guillou, P. Quinton, T. Risset, “Hardware synthesis for multi-

dimensional time”, Proc. 14th IEEE Int. Conf. Application-Specific Sys-

tems, Architectures and Processors, The Hague, Netherlands, pp. 40–50,

Jun, 2003.
c© IEICE 2013

1

This article has been accepted and published on J-STAGE in advance of
copyediting. Content is final as presented.

©

IEICE Electronics Express, Vol.*, No.*, 1–12

[7] R. Perez-Andrade, C. Torres-Huitzil, R. Cumplido and J.M. Campos, “On

a hybrid and general control scheme for algorithms represented as a poly-

tope”. Proc. 25th IEEE Int. Symp. Parallel and Distributed Processing

Workshops and Phd Forum, Anchorage, USA, pp. 330–333, May, 2011.

[8] S. Derrien, “Automation for Applictaion Specific Hardware Architec-

tures”. Research Habilitation, Université de Rennes 1, France, 2011.

[9] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail, S. Mahlke, S. Abraham,

G. Snider “High-Level Synthesis of Nonprogrammable Hardware Acceler-

ators”. Proc. 11th IEEE Int. Conf. Application-Specific Systems, Archi-

tectures and Processors, Boston, USA, pp.113–124, Jul, 2000.

[10] H. Dutta, J. Zhai, F. Hannig and J. Teich, “Impact of loop tiling on

the controller logic of acceleration engines”. Proc. 20th IEEE Int. Conf.

Application-Specific Systems, Architectures and Processors, Boston, USA,

pp. 161–168, Jul, 2009.

[11] A. Plesco, “Program transformations and memory architecture optimiza-

tions for high-level synthesis of hardware accelerators”. PhD thesis, École

Normale Supérieure de Lyon, France, 2010.

1 Introduction

Loop level parallelism (LLP) approach is a popular parallelization method

used in digital signal processing because several electronic systems used in

this domain are built on loop based algorithms like matrix multiplications,

matrix decompositions, convolutions, and system of equations solvers. Imple-

menting highly-parallel hardware architectures exploiting the LLP by hand is

cumbersome, error-prone, and it leads to spend much time during the design

space exploration phase. High-level synthesis (HLS) methods allow a fast ex-

ploration and evaluation of possible hardware architectures. Generally, HLS

methods try to extract automatically the parallelism from an algorithmic rep-

resentation, and at the same time, they derive parallel hardware structures

from the input representation. One of the representations used for HLS [1]

is the polytope model, which provides an abstraction to represent loop com-

putations of an input specification as integer points inside of a polyhedron.

As a result, the polytope model could be used for the synthesis of hardware

architectures exploiting the LLP in digital signal processing algorithms in

the form of processor arrays [2, 3], or highly-pipelined mono-processors [4].

Processor arrays are regular, locally connected and massively parallel

architectures with simple processing elements (PEs), whose structure is well-

suited for their implementation in VLSI or FPGAs. The synthesis of the pro-

cessor array interconnection topology, the PE data-path [2], and the deriva-

tion of control structures are topics well studied [5, 6, 7]. However, there are

few attempts for deriving memory interfaces for processor arrays constructed

by using the polytope model. In this paper, an external memory interface

system for inserting/extracting data to/from the processor array based in

four architectural cases is proposed. In the rest of this paper, we will refer

as external memory as the memory placed outside of the processor array,

mainly to store input and output data. Such external memory interface sys-
c© IEICE 2013

2

IEICE Electronics Express, Vol.*, No.*, 1–12

tem could be implemented by using built-in FPGA Block-RAMs (BRAMs)

or by off-chip DRAM. Our proposed memory scheme is based on the assump-

tion that all external data are required and produced by the processor array

during each clock cycle respecting the algorithm data dependences. This as-

sumption can be interpreted as the worst case scenario when the processor

array is derived, and it guarantees that highly data demand algorithms could

be supported by the memory scheme without adding latency. The impact

of such assumption in the memory scheme is that the external data are dis-

tributed into different memory banks working in parallel, and in a different

clock domain compared to the processor clock. The proposed memory sys-

tem could be used as a complement of HLS tools within the polytope model

context like [2, 3].

2 Related work

The HLS research community has mostly focused on deriving hardware ac-

celerators from high-level specifications. The problem of automatically gen-

erating memory interfaces for processor arrays has received little attention

[8]. Consequently, the derivation of memory interfaces between processor

arrays and external memory devices is gaining attention from the research

community. First attempts for solving the data I/O were based on ad-hoc

arbitrator mechanisms implemented in hardware and controlled by a host [9].

Dutta et al. in [10] provide a methodology for automatic generation of

control engines in charge of orchestrating data transfer and computations for

processor arrays generated by the PARO framework [2]. They describe a

scheme for the memory controller synthesis based on the use of counters, de-

coders, address generators, and glue logic for interfacing the processor array

to other components integrated in a system-on-a-chip (SoC) environment.

However, the data I/O is only proposed to be done either by functional sim-

ulation, by direct memory access (DMA), or by software running on a host

processor. In [11], Plesco presents a hand-made solution for interfacing an

external memory with a processor array of 4 × 4 PEs generated by MMAl-

pha tool [3] by using the matrix-matrix multiplication (MatMul) of complex

numbers of 32-bit word size. This hand-made solution is only an specific

implementation without any generalization for other cases of study. Plesco

states that besides the difficulty of designing a memory architecture, knowl-

edge of the processor array data access patterns, and enable an internal data

reuse are needed in order to obtain a good performance. Also, within the

MMAlpha framework and using the MatMul algorithm, Derrien in [8] deals

with I/O aspects involved in the processor array generation by proposing

a methodology to derive a set of conflict free I/O data pipelines along the

processor array boundaries. A common factor in these related works is that,

latency penalties or implement I/O serialization for external data are intro-

duced, contrary to our proposed memory system that provides data as it is

needed, without stalling the processor array execution.

c© IEICE 2013

3

IEICE Electronics Express, Vol.*, No.*, 1–12

3 Polytope model overview

The polytope model provides an abstraction to represent computations in a

sequential loop program or in a more general representation called system

of uniform recurrence equation (SURE). The SURE concept has originated

several cases of recurrence equations like the piecewise regular algorithm

(PRA) since it is more specific than a SURE and it describes the case when

conditional statements inside of a loop nest are presented. A PRA is a set

of N quantified equations and each equation Si[I] is defined for all I ∈ Ii

according to:

xi

[

Pi
~I
]

= Fi

(

..., xj

[

Qj
~I − ~dji

]

, ...
)

if CI
i

(

~I
)

(1)

where xi, xj are affinely indexed variables. The indexing functions of the

variables are defined by the constant indexing identity matrices Pi, Qj and

by the i-th constant integer dependence vector ~dji of the corresponding di-

mension. CI
i (
~I) is called iteration dependent condition of an equation. Fi

denotes arbitrary functions and the dots denote similar arguments. I is an

integral subset I ⊆ Z
n called iteration space of the PRA. The vector ~I repre-

sents an iteration point ~I ∈ I. Some variables in the PRA represent the data

input and output from an arbitrary external source in form of I/O variables.

The common design flow followed for the generation of processor arrays

within the polytope model is shown in Fig. 1.a. First, the original program,

or source polytope is represented as a PRA (Fig. 1.b). From the source

polytope, a reduced dependence graph and the iteration space I are extracted

so as to define a scheduler and an allocation functions. The purpose of the

scheduler is to assign a computation date for each task (i.e. ~I), whereas

the allocation assigns the tasks to PEs such as no two tasks with the same

computation date are assigned to the same PE. Together, the scheduler and

allocation functions are used to perform a space-time mapping over the source

polytope in order to obtain the target polytope. The space-time mapping

divides the source polytope I into two subspaces T and P which define a time

and a processor space, respectively. After the space-time transformation,

the space indexes are partitioned in order to obtain a processor array of a

fixed size preserving the interconnection topology among PEs. Strip mining

is used to partition one dimension of the iteration space into strips. Each

strip divides one dimension of the processor space by a constant stride of

size SSpk, and it adds new dimensions for scanning them without adding

these indexes to the PRA [7]. The stride size SSp0 defines the size of a

one-dimensional processor array, whereas SSp0 and SSp1 define the size of

a two-dimensional array, i.e. P ⊂ Z and P ⊂ Z
2, respectively. Finally, the

controller, the processor array topology, and the PE data-path [2, 3] and

the memory controller (Fig. 1.c) are synthesized. In the next section, the

proposed solution for the external memory scheme is presented by using the

I/O variables presented in the PRA, and their CI
i (
~I). The PRA I/O variables

are denoted by the Ain, Bin and Cout variables in Fig. 1.b.

c© IEICE 2013

4

IEICE Electronics Express, Vol.*, No.*, 1–12

RDG and DG
Extraction

Scheduler
Function

Space-Time Transformation

Allocation
Function

Partitioning

Control
Generation

Memory
Controller

Abstract
Processor Array

Functional Fixed Processor Array

 y[i,j,k] = Ain[i,0,k] if (j==0)

 x[i,j,k] = Bin[0,k,j] if (i==0)

 y[i,j,k] = y[i,j-1,k] if (j>0)

 x[i,j,k] = x[i-1,j,k] if (i>0)

 w[i,j,k] = y[i,j,k] * x[i,j,k]

 z[i,j,k] = z[i,j,k-1] + w[i,j,k] if (k>0)

 z[i,j,k] = w[i,j,k] if (k==0)

 Cout[i,j,k] = z[i,j,k] if (k==N-1)

 MatMul Piecewise Regular AlgorithmInput Specification in a Piecewise Regular
Algorithm Form

Functional Fixed Processor Array

(a) (b)

(c)

!"#$% !"#$& !"#$' !"#$(

)*+,-#./0-123

345./6-7+89-&

)*+,-#./0-123

345./6-7+89-%

:23;% :23;& :23;(:23;'

)*+,-#./0

123

345./6

7+89-&
:23;

'

:23;(

#"!$'

#"!$(

)*+,-#./0

123

345./6

7+89-%

:23;&

#"!$&

:23;%

#"!$%

)*+,-#./0

123

345./6

7+89-&

)*+,-#./0

123

345./6

7+89-%

:23;

:23;

:23;

:23;%

&

'

(

!"#$

#
%

#
&

!"#$&

!"#$(

!"#$'

!"#$<

!"#$=

!"#$>

!"#$?

%

Fig. 1. From the design flow on the polytope model, it is

possible to synthesize hardware from a PRA.

4 External memory interface architecture

The derivation of the external memory interface depends on the I/O variables

and its iteration dependent condition after space-time. These I/O variables

can be viewed as representation of the external memory. Mainly, after space-

time mapping, these variables can be grouped in two different possibilities.

A border mapping occurs when the index vector ~I of CI(~I) is transformed

into processor space, and one dimension of the vector ~I in the I/O variable is

mapped to the time space. On the other hand, a broadcast mapping occurs

when the index vector ~I of CI(~I) is transformed into time space, and all di-

mensions of vector ~I in the I/O variable are mapped to the processor space.

From these two mapping possibilities, there are other two cases depending

if the PRA variable represents an input or output. Together, there are four

possible architectural cases: input border mapping (Fig. 2.a), output bor-

der mapping (Fig. 2.b), input broadcast mapping (Fig. 2.c), and output

broadcast mapping (Fig. 2.d).

Independently of any of the four architectural cases, the memory scheme

could be composed by address generator units (AGUs), memory banks, regis-

ters working in serial-input/parallel-output (SIPO) and parallel-input/serial-

output (PISO) fashion. The selection of these architectural components, their

interconnection, and their internal architecture varies depending on the vari-

able types, the variable index vector ~I, the space-time mapping, and the size

of the processor array. In the next two subsections the memory banks and

the AGU required for all the architectural cases are described

4.1 Memory banks

One of the assumptions made for the external memory interface is that the

I/O data is stored in several memory banks organized according to the size of

the strips (SSpk) and the amount of memory banks used. For I/O variables
c© IEICE 2013

5

IEICE Electronics Express, Vol.*, No.*, 1–12

External

Input

Memory

External

Output

Memory

External

Input

Memory

External

Output

Memory

Input Border Mapping Output Border Mapping

Input Broadcast Mapping Output Broadcast Mapping

(a) (b)

(c) (d)

Fig. 2. Architectural cases according to the variable type

and the mapping possibilities.

represented as two-dimensional arrays, data are linearized in a row-major or

column-major order according to the design constraints. The main idea of

the data organization is that a matrix of size N ×N is partitioned into strips

of constant size, and at the same time, each strip is divided into m− 1 data

blocks according to the amount of memory banks. The size of these data

blocks is given by a memory distribution factor fx which indicates how many

contiguous columns or rows are grouped in a data block. Furthermore, it

is assumed the use of dual-port memories for each memory bank and that

it is possible to extract two data per memory port in a processor clock cy-

cle. This last assumption requires to double the external memory clock fre-

quency Clkmem with respect to the processor array clock frequency Clkpa (i.e.

Clkmem = 2×Clkpa), similarly to globally-asynchronous locally-synchronous

(GALS) approach. Therefore, the combination of both assumptions (GALS

approach and dual port memories) leads to have a data extraction rate of

four data per memory bank in a processor clock cycle.

4.2 Address generator unit

The function of this module is the generation of the memory addresses for

each memory bank given an index bus provided by the controller [7]. An

AGU contains a combinational module in charge of generating the addresses

following a mathematical formula as shown in Eq. 2.

MemAddressj = (N × k) + i− [fcol ×N (tilepx +MemBankj)] (2)

where MemAddressj is the memory address for the j-th memory bank,

i, and k are the indexes used for a PRA variable, N is the problem size,

MemBankj is the memory bank id, fcol is the memory factor distribution

and tilepx is one tile index obtained after partitioning the processor space.

Although the AGUs function is the same regardless of the four architectural

cases, its internal architecture varies according to the border and broadcast
c© IEICE 2013

6

IEICE Electronics Express, Vol.*, No.*, 1–12

mapping possibilities. Basically, in both cases the address generator needs to

scan its corresponding memory bank according to the scheduler function in

order to respect the activation sequence imposed by the space-time mapping.

Since in the case of border mapping one of the indexes of the I/O variable is

mapped to time space, this index could be used for scanning a memory bank.

On the other hand, in the case of the broadcast mapping both variable indexes

are mapped to processor space, thus one processor index must be scanned by

using counters. Next subsections present one by one the four architectural

cases. Each one of these cases are modular in the sense that by replicating

each memory interface it is possible to support processor arrays of different

size.

4.3 Input variable border mapping

The first architectural case occurs when the space-time mapping indicates

that the input variable of the PRA is inserted in a processor array border.

After the transformation, the indexes from vector ~I of the input variable are

mapped to time space and processor space. However, due to the iteration de-

pendent condition CI(~I) one processor space dimension is set to zero whereas

the other dimension remains variable. This leads to the idea of placing the

AGUs at the border of the constant dimension, and generating the remaining

processor index by replicating the same amount of AGUs as the processor ar-

ray border indicated by SSpk. As a result of the GALS approach two AGUs

per address port are required in order to generate two different addresses

in a processor cycle. The selection of the addresses generated by these two

AGUs is accomplished by a multiplexer and a control unit. The interconnec-

tion of two AGUs, the multiplexer and the flip-flop T is called two-address

generator module (TAGM). Since the memory bank produces two data per

memory port in a processor clock cycle, one of these data must be stored in

one memory clock cycle. Besides, there must be an interface from a faster to

a slower domain. Such interfacing is performed by a SIPO interface which

receives two data extracted from the memory bank and sends both data in

the next processor clock cycle. The SIPO interface consists on two-register

pairs controlled by different clock domains. Each pair of registers works on

parallel with respect of the other pair. The interconnection of the TAGM,

the dual-port memory bank and the SIPO is called input border module (Fig.

3). An input border module is able to provide four data from the memory

bank. By replicating this module, it is possible to increase the data rate as

needed (larger processor arrays), whereas by relaxing one of the two assump-

tions (GALS design or dual-port memory), it is possible to decrease the data

rate (smaller arrays).

4.4 Output variable border mapping

The second architectural case occurs when the space-time mapping indicates

that the output variable of the PRA is extracted from a processor array bor-

der. Similarly to the input variable case, after space-time transformation

the CI(~I) indicates that one processor dimension is set to a constant value
c© IEICE 2013

7

IEICE Electronics Express, Vol.*, No.*, 1–12

Memory
Address

Data

Dual Port

Memory

Clk

Index
Bus

TAGM

Clk

TAGM

Clk

SIPO
Clk

1x

Clk
2x

Data

Address
1

Address
0

Output
0

Output
1

SIPO
Clk

1x

Clk
2x

Input

Input

2x

2x

2x

Output Data
0

Output Data
1

Output Data
2

Output Data
3Memory

Address

Fig. 3. Interconnection of the TAGM, dual-port memory

and SIPO for the input border case.

(problem size) whereas the other dimension remains variable. Therefore,

the address generation is tackled in a similar way as the input variable bor-

der case, where the constant processor index is generated by replicating the

TAGMs. Since each TAGM produces two memory addresses in one processor

cycle, it is possible to insert two data produced by the array sharing the same

input port. The selection of the two inputs from the processor array is done

by a PISO module. Fig. 4 shows interconnection of the TAGM, PISO, and

dual-port memory forming an output border module, for storing the data

results from the processor border. Likewise the input border module, the

output border module is able to insert four data to the memory bank. Also,

by replicating the output border module or relaxing one of the assumptions,

it is possible to support larger or smaller processor arrays.

Dual Port

Memory

Clk

 Address
1

2x

PISO

Clk
2x

Input

Input

1

0

PISO

Clk
2x

Input

Input

1

0

Input Data
0

 Address
0

 Input1

 Input0

Input Data
1

Input Data
2

Input Data
3

TAGM

Clk2x

TAGM

Clk2xInput

Index

Bus

Fig. 4. Interconnection of the TAGM, dual-port memory

and PISO for the output border case.

Although data produced by the processor array is recollected at the pro-

cessor borders, it is not necessarily produced by the border PEs in a processor

array. This situation occurs when the problem size does not fit exactly in the

partitioned array. In such case the output data are produced by inner PEs

and data must be sent to the processor array border, which is accomplished

by placing a layer of transporting elements (TE) following the interconnec-

tion structure of the processor array. A TE has a multiplexer in charge of

selecting between the data results produced by the PE or the result produced

by its previous neighbor. The multiplexer output is stored in a register which

delays the multiplexer output one clock cycle.

c© IEICE 2013

8

IEICE Electronics Express, Vol.*, No.*, 1–12

4.5 Input variable broadcast mapping

The third architectural case happens when the space-time mapping indicates

that the input variable of the PRA is inserted in each PE of the processor ar-

ray. After the mapping, the iteration dependent condition CI(~I) is mapped to

time space while the indexes from vector ~I of the input variable are mapped

to processor space. In this case the AGUs should scan one of the processor

indexes by using counters. In addition, the other index is generated by repli-

cating the AGUs at one border of the processor array. Therefore a similar

approach to the input variable border case could be used for generating the

memory bank addresses as well as for storing the data in dual-port memory

banks. Fig. 5 shows the interconnection of the TAGM, the dual-port me-

mory and the SIPOs interconnection in the input broadcast module. Note

that there are four SIPO modules instead of two like in the case of input

border case. This is because this architectural case requires a different kind

of storage-interface module compared with the input border case.

Addresses

Data

Dual Port

Memory

Clk

Index
Bus

TAGM

Clk

Addresses
TAGM

Clk

Data

Address
0

Address
1

Output
0

Output
1

SIPO
Clk

2x

Input

2x

1x

1x

Output
Data Bus3

SIPO
Clk

2x

Input

SIPO
Clk

2x

Input

SIPO
Clk

2x

Input

Output
Data Bus2

Output
Data Bus1

Output
Data Bus0

Addresses

Data

Dual Port

Memory

Clk

Index
Bus

TAGM

Clk

Addresses
TAGM

Clk

Data

Address
0

Address
1

Output
0

Output
1

SIPO
Clk

2x

Input

2x

1x

1x

Output
Data Bus3

SIPO
Clk

2x

Input

SIPO
Clk

2x

Input

SIPO
Clk

2x

Input

Output
Data Bus2

Output
Data Bus1

Output
Data Bus0

Fig. 5. Interconnection of the TAGM, dual-port memory

and SIPO for the input broadcast case.

In the broadcast case, a block of data (equals to the amount of PEs), is

required each time a subset of the processor space is being scanned. The data

block is sent in advance to each PE where each datum of the data block is

required. Such forwarding requires sending all data contained in sub-blocks

simultaneously from one processor border, and sending all the sub-blocks

simultaneously too. Each time that a sub-block passes through a pipeline

stage, one datum of the sub-block is taken by a PE while the remaining data

are sent to the next pipeline stage. This approach calls for a high amount of

registers for storing the data at each pipelining stage, and this set of registers

is called broadcast data array. As consequence of the broadcast data array, at

the processor array border, the SIPO requires to store SSpx data extracted

from a memory bank.

4.6 Output Variable Broadcast Mapping

The final case is when the space-time mapping indicates that the output

variable of the PRA is extracted from each PE of the processor array. Like in

the input variable broadcast case, after the mapping, the iteration dependent

condition CI(~I) is mapped to time space while the indexes from vector ~I of

the input variable are mapped to processor space. This case shares some

similarities with to the input broadcast case. For instance, in both cases the
c© IEICE 2013

9

IEICE Electronics Express, Vol.*, No.*, 1–12

concepts of data block, pipeline stage and register array are present. However,

in the output variable case since data are produced by the PEs it is required

to send the data through the pipeline stages until data reach the array border.

The PISO broadcast module receives a data bus of a sub-block and it selects

one datum to be stored in the memory bank by using a SSpx−1 multiplexer.

The multiplexer selector signal is generated by a counter which scans all data

contained in the data sub-block. Finally, Fig. 6 shows the interconnection

of the TAGM, the dual-port memory and a two-PISOs modules forming the

output broadcast module.

Dual Port

Memory

Clk

 Address
1

2x

Two - PISOs

Clk
2x

Input

Input

1

0

Two - PISOs

Clk
2x

Input

Input

1

0

Input Bus
0

 Address
0

 Input1

 Input0

Input Bus
1

Input Bus
2

Input Bus
3

TAGM

Clk2x

TAGM

Clk2xInput

Index

Bus

Fig. 6. Interconnection of the TAGM, dual-port memory

and PISO for the output broadcast case.

5 Memory Scheme Results

5.1 Independent-Technology Results

The amount of hardware elements required by each memory architectural

case in function of the processor array size (strip size), and in function of

some constants c0, c1, n and f is shown in Table I. The SSpx and SSpy

terms refer to any one of the two strip size parameters (SSp0 or SSp1), c0

and c1 are constant values which depends on the scheduler function. The

function g(SSpx, SSpy) is defined as shown in Eq. 3. The use of multi-port

memories is represented by n while f is factor for which the memory system

is faster than the processor array, respectively. Both terms are used for

determining the amount of memory banks. Note that when the input border

case is derived, the amount of hardware elements is linear with respect of any

strip size parameters. Furthermore, if the memory assumptions of dual port

memory (n = 2) and the twice memory operation frequency with respect of

the processor array frequency (f = 2), then the amount of memory banks

is decreased by a factor of four. Besides, if nf > SSpx then any of the two

memory assumptions could be relaxed until at least nf = SSpx.

g(SSpx, SSpy) = SSpy

(

SSpx
∑

i=1

i

)

+ (SSpx × SSpy) (3)

c© IEICE 2013

10

IEICE Electronics Express, Vol.*, No.*, 1–12

Table I. Hardware resource utilization for each memory ar-

chitectural case.

Amount Input Output Input Output

of Border Border Broadcast Broadcast

Adds 6(SSpx) 6(SSpx) 6(SSpx) 6(SSpx)

Mults 2(SSpx + c0) 2(SSpx + c1) 2(SSpx) 2(SSpx)

Muxs SSpx/n (SSpx × SSpy)× - SSpx
(SSpx/n)

Cnts - - SSpx 2(SSpx)

Regs 2(SSpx) SSpx × SSpy g(SSpx, SSpy) g(SSpx, SSpy)

FFs-T SSpx/n Spx/n - -

Dual-Mems SSpx/(nf) Spx/(nf) Spx/(nf) Spx/(nf)

5.2 FPGA Implementation Results

This section presents the place and route (PAR) results of three memory

architectural cases which are part of a complete MatMul processor array

system (including control, data-path and memory). Because of the variables

present in the MatMul algorithm (two input and one output variables), it is

required three architectural cases, and the selection of these cases is derived

by the space-time mapping. The space-time transformation was derived by

using scheduler function ~λ = [1 1 1], and the projection vector ~u = [1 0 0]t.

The three architectural cases were modeled using VHDL, placed and routed

with Xilinx ISE 13.1 targeted for a Virtex-6 XC6VCX240T FPGA device.

The PAR results shown in Table II correspond to the implementation of a pair

of input border, input broadcast, and output border modules (six modules

total) using a word size of 32-bit. Also, Table II shows the PAR results for

the MatMul processor array of 8 × 8 PEs. Memory banks required for each

architectural case and the processor array FIFOs were implemented using

built-in FIFOs [2] and BRAMs. Although the results are presented for FPGA

BRAMs, it is important to emphasize that off-chip DRAM could be used

instead of built-in BRAMs. The processor array is able to multiply matrixes

of N ×N where N < 171 (the size of each memory bank is 512 Kbits). Note

that the memory assumption of Clkmem ≥ 2× Clkpa is achievable since the

processor array operation frequency is three times slower than the worst case

for any of the memory cases. Moreover, as stated by the expressions shown

in Table I, the amount of registers in the broadcast case is greater than the

border modules.

In addition, Table II shows the theoretical peak bandwidth obtained by

each architectural case. The input bandwidth required for the processor ar-

ray is 3.72 GB/s, while the output bandwidth is 1.86 GB/s, i.e. the I/O

bandwidth is 5.57 GB/s. Both, input and output bandwidths requirements

are exceeded by the I/O bandwidth provided by the memory architectural

cases due the use of several communication channels (eight channels per ar-

chitectural case). The input bandwidth provided by the proposed solution is

13.24 GB/s, and the output bandwidth is 9.47 GB/s, i.e. the I/O bandwidth

is 22.71 GB/s which is four times faster that the bandwidth required by the

c© IEICE 2013

11

IEICE Electronics Express, Vol.*, No.*, 1–12

processor array. This I/O bandwidth is obtained by adding each architec-

tural case bandwidth as shown in Table II, and each one of these bandwidths

is calculated by multiplying the word size times the amount of communi-

cation channels. In contrast to [11], the input bandwidth required by the

4 × 4 processor arrays is not satisfied by the Plesco’s solution since a CPU

is responsible for bringing the external data by using two communication

channels. In this last case, the bandwidth required by the 4× 4 array is 3.2

GB/s, while the input data transfer rate achieved is 32 MB/s due to latency

in the memory controller. At the best of our knowledge, except by [11], there

are not other works reporting I/O bandwidth.

Table II. PAR results for three architectural cases and a

processor array implementation for MatMul.

FPGA Resources Input Input Output Processor

Name Available Border Broadcast Border Array

Slices Registers 301,440 591 2,078 205 14,610

Slices LUTs 150,720 459 781 522 12,194

RAMB36E1 416 29 29 29 -

FIFO36E1 416 - - - 16

DSP48E1 768 16 16 16 192

Max. Frequency (MHz) 227.17 186.43 296.03 57.98

Peak Bandwidth (GBytes/s) 7.27 5.97 9.47 5.57

6 Conclusions

An external memory interfacing system for inserting/extracting data to/from

the processor array derived from a PRA has been presented. The memory

system is composed by four architectural memory cases based on the use of

a GALS approach, and the use of dual-port memory banks. By relaxing the

GALS assumption and/or replacing the dual-port memory by single ones, it

is possible to fit the memory system to smaller or slower processor arrays.

The place and route results show that the assumption made of the external

memory working in a faster clock than the processor array is achievable, since

the processor array clock frequency is three times slower than the worst case

of any architectural memory cases. Besides, the bandwidth achieved by the

complete system fulfills the bandwidth required by the processor array. Other

algorithms such as one-dimensional convolutions, system equations solvers,

and matrix decomposition (like Cholesky, LU or QR) modeled as PRA are

suitable of being implemented as processor arrays using the proposed memory

scheme.

Acknowledgments

First author thanks the National Council for Science and Technology from

Mexico (CONACyT) for financial support through the scholarship 3792, and

to Dr. Manuel E. Guzmán for his contribution to this research.

c© IEICE 2013

12

	On an external memory scheme for processor arrays.pdf
	ReplyLetter.pdf

